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Spherulitic growth and the microstructure of crystalline polymers is proved to correspond to space filling by the
expansion of spheres. Therefore spherulitic microstructures are analogous to space filled in by randomly
nucleating (in space), expanding and touching spheres. This is contrasted with microstructures in metals, where
surface tension leads to reshaping of the grain boundaries. Geometrical solutions are given for the general cases of
grain-boundary surface shapes depending on the ratio of growth rates and contact radii. A space-filling computer
model for expanding spheres is described, and the program’s URL on the Internet is given. Several micrographs
and figures are analysed to show the relationship between grain-boundary shapes and growth kinetics. Previous
papers and computer models on this subject are reviewed.q 1998 Elsevier Science Ltd. All rights reserved.
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INTRODUCTION

The morphology of grains and grain boundaries in
polycrystalline metals has been much researched and
described in published literature1–4. When referring to
crystalline polymers, it is usually tacitly assumed that the
microstructures observed are analogous to those observed in
metals on the basis that spherulites are equivalent to
grains5. Superficially (neglecting the fine structure within
the spherulites) this appears to be so; the grain boundaries
in polymers delineate shapes apparently similar to
those found in single-phase metals. Furthermore,
metallographic techniques developed for quantitative
stereological measurements are applicable equally to
both systems6–8.

Following the work of Smith1,2, it is now the generally
accepted view that grain boundaries in metals change shape
in the final stages of solidification (or during any subsequent
heat treatment), and depart from the original topology of
randomly distributed touching spheres. This grain regrowth
occurs (by diffusion) to satisfy the condition of minimum
surface energy and to equilibrate surface tension at
boundary edges and corners; the latter requirement being
responsible for the curving of the boundaries. The rate of
adjustment, which is proportional to curvature, is greatest at
grain corners, where one boundary meets other boundaries
at nearly 1208. As a result, the original shape of the grains
and their boundaries changes with time. This effect is
illustrated inFigure 1, which shows four stages of grain-
shape readjustment found in metals, reproduced from the
original paper by Smith1.

The main point intended by this preamble is that the
shape of grain boundaries observed in metals is modified by
grain regrowth, and therefore the observed microstructure
does not represent the original random structure formed by
nucleation, growth and impingement. The hypothesis is put
forward here that in crystalline polymers regrowth of
spherulites (and the accompanying shape change of

boundaries) does not take place. Consequently the shapes
of spherulite boundaries observed in polymers are those that
formed as a result of random spatial distribution of nuclei,
crystal growth and eventual meeting of the spherical growth
surfaces on solidification. In that sense the shapes of grain
boundaries in polymers are fundamentally different
from those found in metals, which are modified by
interfacial tension and diffusion. In this paper we elaborate
on this unique relationship between the curvature of
interspherulitic boundaries and growth rates of the adjoining
spherulites.

The process of crystal aggregation into a spherulite is
sensitive to external influences with the result that the
spherical regularity is not always equally pronounced.
Therefore it is necessary to assume that growth takes place
under uniform fields of temperature and composition, so
that the shape of the growing entity is solely a function of
the intrinsic properties of the molecular or atomic
constituents. Under these conditions, spherulites, as
aggregates of single crystals radiating from the centre,
will always assume the shape of a sphere, since the radial
growth rate is the same in all directions. Adjacent
spherulites, which possess spherical symmetry, always
have the same crystallographic relationship to each other
independent of their relative positions, and therefore the
shape of the common boundary will be space-invariant. In
metals, under the same conditions, the shape of a boundary
between two growing metal grains should vary and be
dependent on their relative crystallographic orientation10.
However, in nearly isometric and pure metals (fcc, bcc) this
effect is not pronounced, and grains grow as spheres to a
good approximation.

From the above one can infer that microstructures found
in crystalline polymers (formed on solidification under the
specific conditions of uniform temperature and composi-
tion) are governed by the growth and impingement of
perfectly spherical entities. It is convenient to describe the
resulting shape of the spherulite boundaries by geometrical
considerations of two expanding spheres that touch and
grow to form a common boundary.

POLYMER Volume 39 Number 23 1998 5717

PolymerVol. 39 No. 23, pp. 5717–5724, 1998
0032-3861/98/$ – see front matter

q 1998 Elsevier Science Ltd. All rights reserved
PII: S0032-3861(97)10186-0

* To whom correspondence should be addressed



GEOMETRICAL CONSIDERATIONS

Two points fixed in a Cartesian space are the centres of
expanding (growing) spheres denoted asa andb; the radii
of the spheres arer a andr b, respectively. At a time,t ¼ 0,
the spheres just touch, and we denote the magnitudes of the
radii at that time asr a ¼ a andr b ¼ b. Let Ga andGb be the
corresponding radial growth rates of the spheres so that, for
times t . 0, the above quantities are simply related as
follows: ra ¼ aþ Gat andr b ¼ b þ Gbt.

The spheres are not allowed to grow into each other, and
when ðra þ rbÞ . ðaþ bÞ the spheres form a common
boundary. In general this is a three-dimensional surface
possessing rotational symmetry around an axis formed by a
line joining the centres of the spheres. Consider a cross-
section through the spheres as shown inFigure 2. By
Pythagoras’ theorem:AM2 ¼ AQ2 þ MQ2 andBM2 ¼ MQ2

þ BQ2. Noting further that AM ¼ ra, BM ¼ rb,
AQ¼ðaþ bÞ=2þ x, BQ¼ ðaþ bÞ=2¹ x and MQ¼ y, a
general analytical expression of the common boundary
surface can be derived in terms of the coordinatesx, y andz,
and timet.

Restricting considerations to linear growth only (i.e.Ga

and Gb ¼ constant) we find that there are four distinct
shapes of the boundary arising. The parameters describing
the four cases are summarised inTable 1, and are considered
in more detail below.

Case 1 (Table 1)
In this case the growing spheres have the same radii at all

times, and pointsO, P and Q coincide. The boundary
between the two spheres is always planar in the form of a
circle. The equations of the plane and of its diameter are:

x¼ 0 (1)

d¼

�������������������������������
Gat þ a
ÿ �2

¹ a2
q

The intersection of the spheres and their boundary with any
planep, randomly oriented in space, will result in two cir-
cular arches (from the spheres), attached to a common
straight line (from the boundary). The intersection of the
p plane with the intersphere boundary is always a straight
line.

Case 2 (Table 1)
In this case the spheres are always of different size, and

the boundary is a curved surface. Its shape is given by the
rotation of a hyperbola around a line joining the centres of
the two spheres. In reference toFigure 2, with the origin of
the x-axis at pointO, the equation of the surface is:

(2x)2

(a¹ b)2 ¹
y2 þ z2

ab
¼ 1 (2)

The surface is concave for the largera sphere, and convex
for the b sphere. The intersection of any random planep
with the boundary will always result in a hyperbola,
providing the angle,l, between the normal to the plane
and the axis of rotation is greater than
arctan[2

�����
ab

p
=(a¹ b)]. For lesser angles the intersection

will yield an oval, and finally a circle when the angle
l ¼ 0 (herea andb are not the semi-axes of the hyperbola).
Note that the shape of the boundary is independent of the
magnitude of the growth rates. In semi-parametric form the
equation of the hyperboloid surface is as follows:

x¼
a¹ b

2

� �
þ Ga

a¹ b
aþ b

� �
t (2a)

z2 ¼ y2 ¼ bþ Gat
ÿ �2

¹
aþ b

2
¹ x

� �2
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Figure 1 Grain growth in metals. In A, the solid line shows the original
grains surrounded by five adjacent grains (not shown in full); the broken
line shows the change of grain boundary shape driven by surface tension
and diffusion. In B, two further stages of grain growth are shown. Note the
significant morphological changes between the original and final structures.
At one stage four boundaries meet at one point—an energetically
unfavourable configuration (reproduced from Ref. 1)

Figure 2 Geometry of the cross-section through two expanding spheres,
intersecting at a common boundary. Only small sections of the spheres are
shown. The spheres initially touched at pointP. At the first moment of
touch the radii wereAP¼ a, BP¼ b. PointM is at the edge of the common
boundary at a later time. The origin of the Cartesian axes is atO



In the next two cases thea sphere is growing faster than
the b sphere. The one with the slower growth rate
will always have a limited growth range because in due
course, given sufficient time, it will be engulfed by the
other sphere. However, the shape of the boundary surface
will vary, depending on the relative size of the spheres
when they touch, as expressed by the criteria in column 4,
Table 1.

Case 3 (Table 1)
From the moment of touch, the slower growingb sphere

can only expand in directions away from the faster growing
a sphere until a closure time,tc, when the larger sphere
completely encloses the smaller one. From then on, theb
sphere cannot grow any more and remains enclosed. The
resulting common boundary is also a sphere. If the origin of
the x-axis is taken as the point where the two spheres
touched (pointP in Figure 1), then the equation of the
boundary surface will be given by:

x¼
1

2(aþ b)
G2

a ¹ G2
b

ÿ �
t2 þ 2 aGa ¹ bGb

ÿ �
t

� �
(3)

z2 ¼ y2 ¼ bþ Gbt
ÿ �2

¹ (b¹ x)2

If Ga ¼ Gb, and the origin is moved by the distance (a ¹ b)/
2 from P to O, then equation (3) reduces to equation (2). In
addition, ifa ¼ b, then equation (3) will reduce to equation
(1). After an interval of time, given bytc ¼ 2r b/(Ga ¹ Gb),
the form of equation (3) becomes closed and independent of
time, reducing to:

x¹ rbound

ÿ �2
þ y2 þ z2 ¼ rbound

ÿ �2 (3a)

where r bound ¼ r b(1 þ z), with z ¼ Gb/(Ga ¹ Gb). The
intersection of botha and b spheres with any planep,
randomly oriented in space, will always result in two circles,
one enclosed within the other. Notice that the diameter of
the boundary is dependent on the growth rates through the
parameterz.

Case 4 (Table 1)
In this case thea sphere starts growing from a point on

the surface of an already existingb sphere, so that initially
pointsA, O, P andQ coincide. At first theb sphere will grow
over the embryonica sphere, confining the latter’s growth
in the negativex-axis direction. However, the faster growing
a sphere will in time grow larger than theb sphere and
eventually engulf it and stop it from further growth.

The development of this boundary surface is also
described by equations (3) and (3) with the origin of the
x-axis at pointP. The conditiona , b(Gb/Ga) ensures that
in equation (3) the second term forx is negative, dominating
the expression for smallt. The initial growth in the negative

x-axis direction will continue until a timet9 ¼ (bGb ¹ aGa)/
(G2

a ¹ G2
b), as can be derived by differentiation with respect

to t. The enclosure of theb will take place at timetc, given
above for Case 3.

COMPUTER MODELLING

We have developed a computer model to simulate the
growth of spheres in space. The program is available as
freeware on the Internet11. The processes of nucleation and
growth are independent of each other, and are generated by
appropriate algorithms. In this sense it is similar to models
reported previously, which were developed to simulate
single-crystal grain growth in metals and spherulitic growth
in polymers12–15. However, there are several new features in
our computer model which were not available previously.

First, the topology obtained is the result of a space-filling
process, and not the result of analytical solutions as given
above or in the previous computer models. The simulation is
carried out in a virtual space represented in the computer by
a lattice enclosed in a finite rectangular ‘container’. Initially,
all lattice points in the rectangular container are assigned as
‘liquid’ phase. Particles enlarge from the central nucleus in
proportion to the growth rate, which may vary in space.
Lattice points within each particle are identified as ‘solid’
phase, and lattice points separating the two phases are
assigned as ‘boundary’. When two particles meet, a
common boundary is also established by a simple algorithm
identifying the values of neighbouring lattice points. The
display of the microstructure is obtained by executing a
plane ‘cut’ through the container, and the visualisation is
achieved by assigning different values to (1) liquid pixels
(white), (2) solid pixels (grey or colour) and (3) boundary
pixels (black), which correspond to the appropriate lattice
points. By executing one-by-one plane cuts, a tomography
of the microstructure can be obtained.

Second, the model has the ability to nucleate and grow
two (or more) species independently. This is for the case of
nucleation from the liquid phase only, and it correspond to
the solidification of a binary immiscible mixture. At this
stage variations in liquid composition are not taken into
account.

Third, the space-filling method allows for an easy
implementation of temperature, density and composition
gradients. Analytical solutions involving all three effects are
difficult to implement; by contrast, this method lends itself
naturally to implementation of externally imposed fields
considered on a local scale of neighbouring cells at a time.

The model obeys the law of conservation of mass:

XS þ XL þ Xb ¼ 1 (4)

dXS

dt
¼ ¹

dXL

dt
(5)

whereXS, XL andXb are the mass fractions of the growing
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Table 1 Four cases of boundary surfaces between growing spheres

Case Shape of boundary fort . 0 Relationship between
growth rates

Relationship between
radii at t ¼ 0

Surface area of boundary
at t → `

1 Flat plane Ga/Gb ¼ 1 a ¼ b Unlimited

2 Hyperboloid Ga/Gb ¼ 1 a . b Unlimited

3 Sphere Ga/Gb . 1 a . b (Gb/Ga)
a Finite

4 Revolution of cardioid Ga/Gb . 1 a , b (Gb/Ga)
a Finite

aThese criteria are derived from the second term on the right-hand side of equation (3)



spheres and liquid, and that of the boundary, respectively.
SinceXb p XS or XL, the error in equation (5) due to omis-
sion of the boundary is small. Since we assume the density
of all the phases to be the same and equal to 1, the model
therefore obeys the law of conservation of volume; i.e.
volume fractions and mass fractions are equivalent at all
times16.

Figure 3 shows the microstructure obtained from one of
the simulations on a single species for thermally activated
nucleation, and illustrates both Cases 1 and 2 described
above. The simulation was carried out in a container
comprising 6753 6753 90 lattice points. The depth of the
container is chosen to be approximately twice the diameter
of the largest spherulite that can be expected for the given
species and temperature. The cross-section shown is at
approximately 3/4 of the depth, chosen specifically to
illustrate some of the salient features predicted by the model
and to be representative of the entire structure (not affected
by the presence of the walls of the container). Most grain
boundaries are essentially a single pixel wide; these are
making a large angle with the plane of the cross-section
(plane of the picture). Some boundaries are, however,
smeared (three examples are pointed to with slanting
arrows), which indicates a small, grazing angle between
the boundary surface and the cutting plane, and the
fuzziness appears because of the fact that boundary pixels
occupy finite volume as previously explained.

The small crosses indicate projections of the centres of
each spherulite onto the plane of the cross-section. In the
encircled area the spherulite denoted as 1 contains three
crosses. The middle cross identifies the centre of this
spherulite, the one above and slightly to the right identifies
the centre of spherulite 2, and the third cross to the left and
slightly down identifies the centre of spherulite 3.

Straight boundaries appear between spherulites of which
the centres are equidistant from the boundary, i.e. that

nucleate at the same time. Hyperbolic boundaries occur
between spherulites that were nucleated at different times.
Four boundaries meeting at one point also appear, as well as
a circular boundary wholly within another spherulite. These
features are indicated in the figure by the down-pointing
arrows.

Novel microstructures are generated when spheres of a
different type are allowed to grow within the volume of the
matrix. Figure 4 shows a two-phase microstructure
generated by our computer model, consisting ofa and b
spheres treated as distinct phases with different nucleation
and growth kinetics. Two features are noteworthy: (1)
sphericalb particles are formed within the faster growinga
phase as predicted by Case 3 above; and (2) clustering ofb
cells which were not incorporated into thea cells but grew
to form separate spherulites. Finally,Figure 5 shows the
cross-section of the cardioid-like shape generated in
accordance with Case 4 above. In principle such shapes
could form during simulations similar to that shown in
Figure 4, but are unlikely to be found frequently owing to
their low probability of occurrence.

SPHERULITE MICROSTRUCTURES IN POLYMERS

Published literature contains numerous examples of micro-
graphs of spherulites in polymers, illustrating most of the
geometrical shapes described above. The first classic
example, shown inFigure 6, is that of spherulites grown
in a thin film of isotactic polystyrene from the work of
Keith17. The two selected spherulites, markeda andb, are
very closely of the same size and are assumed to have grown
at the same rate. The boundary between them is a straight
line as predicted by Case 1. Examples of such straight
boundaries are abundant in the published literature on
polymers.

The next example, from an early work of Keller18, is that
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Figure 3 Spherulite microstructure corresponding to Case 2 (and
occassionally Case 1) obtained from the computer model described in the
text. The small crosses indicate projections of the spherulite centres onto
the plane of view. Note: (1) two straight boundaries pointed out by down
arrows on the left-hand side; (2) hyperbolic boundaries (some pointed to by
arrows); and (3) one near-circular feature formed by ‘grain capping’. Other
features are described in the text

Figure 4 Microstructure of two types of spherulite, corresponding to Case
3, obtained from the computer model described in the text. The small
crosses indicate projections of the spherulite centres onto the plane of view.
All boundaries between spherulites of the same type are hyperbolic, all
boundaries between differing spherulites are circular. Note especially the
circular boundary pointed to by the arrow



of banded spherulites grown in a thin film of poly(trimethy-
lene glutarate), as shown inFigure 7. The equally spaced
rings, formed by twisting fibrils within the spherulite,
provide evidence that a constant growth rate prevailed for
both thea andb spherulites19. Note that, on touching, the
radius of thea spherulite was larger than the radius of the
b spherulite ða . bÞ. The spherulites grew to form a
hyperbolic boundary as predicted by Case 2. The centres
of the spherulites are in the plane of the micrograph,
therefore the radii of the spherulites can be measured off the
picture. From the properties of hyperbolae one finds that the
asymptotes are inclined to thex-axis with a gradient given

by 2
�����
ab

p
=(a¹ b). The construction lines and the hyperbola

were drawn onto the micrograph to show how good the
agreement is between the geometrical predictions and the
observed shape. To further illustrate the hyperbolic
curvature of interspherulite boundaries, we examine the
micrograph inFigure 8 showing a cross-section through
three spherulites20. Although the conditions of growth are
unknown in this case, we may speculate that they
approximated constant and uniform growth rate. The
interpretation of the observed microstructure would be
that the in-between spherulite has a smaller radius than the
two adjacent ones, and that (1) the centres of the spherulites
are coplanar or (2) its centre is below the plane of the centres
of the other spherulites. The cut through the grain
boundaries forms a lens-like shape because it corresponds
to two images of Case 2.

One further example of the hyperboloid boundary
between spherulites is shown inFigure 9, taken from
Ref. 21. The interesting point to note is that these are
observed in a metallic system, and therefore provide
evidence for the assertion that the shape of interspherulitic
boundaries is governed by geometrical considerations and is
independent of the chemical nature of the substance.

For the next case we present the micrograph inFigure 10
from Ref. 22 of spherical particles appearing within larger
spherulites in a binary immiscible mixture of polyethylene
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Figure 5 The shape of interspherulite boundary corresponding to Case 4
in Table 1. (a) Thexzandyzcross-sections, obtained at different depths; (b)
thexycross-sections, indicated in the top left picture by the three horizontal
lines. These diagrams prove the cardioid-like shape of the interspherulite
boundary

Figure 6 Two spherulites, of the same radius and growing at the same
rate, produce a straight-line common boundary in accordance with Case 1
for ana andb sphere (micrograph reproduced from Ref. 17)

Figure 7 Two spherulites, growing at the same rate, but nucleating at
different times (a . b), result in a hyperbolic boundary in accordance with
Case 2 for ana andb sphere (micrograph reproduced from Ref. 18)

Figure 8 Hyperbolic boundaries between spherulites as viewed by
scanning electron microscopy (micrograph reproduced from Ref. 20)



and polypropylene, which purports to illustrate Case 3. Here
we find small, round crystalline polyethylene phase,
enclosed within the large polypropylene spherulites. It is
reasonable to assume that polypropylene crystallised at a
faster rate than polyethylene, engulfing it during growth.
However, it is uncertain whether this microstructure formed
necessarily by the mechanism identical with Case 3. It is
possible, for example, that molten polyethylene phase was
entrapped within the polypropylene spherulite, and that it
solidified at a later stage. No further direct examples of Case
3, conforming strictly to the conditions of constant
temperature growth, are known to the authors.

Finally we note another intriguing micrograph, repro-
duced here from a paper by Lovinger23, and shown in
Figure 11. This is another example of thea/b growth of
spheres with unequal growth rates. The unidirectional
matrix, showing preferred orientation in the horizontal
direction, is the crystalline phase of polypropylene (Type IV
crystal structure). It can be considered as a segment of a
spherulite of infinitely large radius. Within the matrix
appear other spherulites with teardrop-like shape (Type I
crystal structure). Initially (before doing the mathematics)
we thought this shape to result from growth in accordance
with Case 3. However, according to the authors, this is due
to the conditions of growth departing from the quiescent
state, and experiencing a temperature gradient.

DISCUSSION

The specific Gibbs free energy of grain boundaries in metals
is substantially higher than its value within the body of the
grain. This provides the necessary driving force for the
minimisation of grain-boundary surface area. In polymers,
due to the complex internal microstructure of the spherulite,
the specific Gibbs free energy associated with the interior of
the spherulite is not less, and can be greater, than that
associated with the interspherulitic boundary. Therefore the
important observations can be made that: (1) there is no
driving force (or it is too small) to change the shape of
interspherulite boundaries and, as a consequence, (2) there
is a unique relationship between the curvature and shapes of
the interspherulitic boundaries and the growth rates of
adjacent spherulites. In particular, this relationship holds
information about the kinetics of crystallisation, and can be
used to advantage when other evidence is not available.

For example, the hyperbolic grain boundary shape always
implies Case 2 growth kinetics. In a paper on spherulitic
morphology of isotactic polypropylene24, Norton and Keller
include a micrograph (Figure 1c) showing one spherulite
with the so-called Type I crystal structure, surrounded by
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Figure 9 Hyperbolic boundaries between spherulites in a metallic alloy
(micrograph reproduced from Ref. 21)

Figure 10 Spherical polyethylene particles within polypropylene
spherulites. It is assumed that the polypropylene spherulites crystallised
at a faster rate than polyethylene, thus engulfing and enclosing the small
polyethylene spherulites in accordance with Case 3 (micrograph
reproduced from Ref. 22)

Figure 11 An unusual shape of spherulites within another crystalline
phase. This micrograph shows a stage during directional solidification of a
thin film of isotactic polypropylene. The crystalline phase, horizontally
oriented, can be considered as a large spherulite within which small
spherulites of a different phase nucleated and grew. This possibly illustrates
Case 3 but for the situation in which the ratioGa/Gb is not constant during
growth (micrograph reproduced from Ref. 23)



other spherulites of the Type IV crystal structure, grown
isothermally at 1258C. Those authors, referring to a previous
publication23, assert that the Type IV spherulites must have
grown at a higher rate than the Type I spherulite. However,
it can be observed that the shape of the boundaries with the
adjacent spherulites is hyperbolic, which, by the observa-
tions above, implies unequivocally that both types of
spherulite had exactly the same growth rate, contrary to
the statements by the previous authors.

If the nucleation of all spheres of one type is
instantaneous, the computer model generates constructions
in accordance with Case 1 above, and simulates polymer
microstructures identical to those described by Mahinet
al.12 and Saetreet al.14 as site saturation, and by Galenski
and Piorkowska15 as athermal nucleation. The microstruc-
tures generated show intercellular boundaries as straight
lines. From the mathematical point of view this is equivalent
to Dirichlet partition of a plane in two dimensions25, and to
Voronoi tessellation of space in three dimensions26.

If the nucleation is sporadic (and all spheres of the same
type), then the computer model generates growth in
accordance with Case 2 above, and that described by
Mahinet al.12 and Saetreet al.14 as Johnson–Mehl kinetics,
and by Galenski and Piorkowska15 as thermal nucleation. In
two dimensions this results in hyperbolic boundaries—a
fact recognised by Mahinet al.12 (see their Figure 3), and
also shown clearly in Figure 4 of Ref. 15.

Circular or oval inclusions of one phase within another
are predicted by both Case 2 and Cases 3 and 4. The
appearance of particles relating to Case 3 is shown for a real
polymer in Figure 10, and for computer simulation in
Figure 4, and has been explained as the result of the faster
growing phase enveloping another slower growing phase.
However, such ‘inclusions’ can also occur in single-phase
crystallisation in accordance with Case 2 as already alluded
to in preceding paragraphs. A plane of cross-section,
passing through the hyperboloid boundary inclined at an
anglel ¼ 0, will result in a circular trace. This effect has
been observed by Mahinet al.12, who referred to this as
‘grain capping’ (their Figure 4), also by Saetreet al.14

in their Figure 1b, and in our computer-simulated micro-
structures, as shown inFigure 3.

The assumption of homogeneous temperature requires
that the temperature is the same everywhere, ensuring that
spherulites of the same type grow at the same rate. However,
in single-phase systems, under continuous cooling condi-
tions the rate of growth of the spherulite will vary, but the
variation will be the same for all spherulites (i.e.Ga/Gb ¼
constant). Therefore the geometry of the interspherulite
boundaries will be the same as in an isothermal case. In
multiphase systems, with different melting points and glass
transition temperatures, the ratioGa/Gb will not be constant
during temperature variation, and may change from being
greater than unity to less than unity during the cooling cycle.
It is easily appreciated that, with such changes, the geometry
of the interspherulite boundaries will be far more complex
than that described by Cases 3 and 4 above. We suspect that
this situation arose during the directionally solidified
polypropylene, shown here inFigure 11, resulting in the
drop-like shape instead of circular.

Recrystallisation of another kind does occur in polymers;
the increasing degree of crystallinity with time in poly-
ethylene27 is attributed to secondary crystallisation. Sec-
ondary crystallisation involves sideways growth of lamellae
within the uncrystallised regions of the spherulite or
lamellar thickening28. It is well established that this

continuing crystal growth is happening within the spher-
ulites, whose boundaries are fully formed, and which do not
change shape as a result of this process. Another occurrence
of increasing degree of crystallinity with time is found in
some glassy polymers, such as poly(ethylene terephthalate),
due to actual growth of the crystalline phase at a very low
rate owing to high viscosity of the matrix. Therefore the
shape of the boundaries and the resulting microstructure, as
a general rule, should not change on cooling or annealing.

The separation and formation of phases in immiscible
mixtures occurs differently in metals and polymers. In
metals, the microstructure is determined by the shape of
primary grains formed on solidification, and by the shape of
secondary grains (precipitates) formed during cooling from
high temperature or on subsequent annealing. In polymers,
solid/solid transformations which lead to the formation of
new phases, such as precipitation from solid solutions, are
not commonly observed. Therefore microstructures
observed in solid polymers are those formed during the
liquid-to-solid transformations mainly. Microstructures of
the type shown inFigure 4 are not seen in polymers, but
they appear frequently in low-molecular-weight substances.

In metals, as a consequence of grain regrowth after
solidification, the grain count will always underestimate the
number of nuclei. Furthermore, it was shown that
continuous grain growth ina-brass not only leads to grain
shape changes, but also results in significant texture
changes29. This means that corners formed by four adjacent
grains (formed by chance during solidification) should be
observed in real polymer microstructures, but should never
be seen in metal microstructures. An example in polymers
of four boundaries meeting at one point is given in Ref. 24
(Figure 1a). Many other examples can be found in the
literature. Our computer model also predicts this structure
(seeFigure 3).

In conclusion, it is emphasised that the ratios ofGa/Gb

anda/b of two adjacent spherulites play paramount roles in
the shape of the grain boundaries, and hence that of the final
microstructure.
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