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Spherulitic growth and the microstructure of crystalline polymers is proved to correspond to space filling by the
expansion of spheres. Therefore spherulitic microstructures are analogous to space filled in by randomly
nucleating (in space), expanding and touching spheres. This is contrasted with microstructures in metals, where
surface tension leads to reshaping of the grain boundaries. Geometrical solutions are given for the general cases of
grain-boundary surface shapes depending on the ratio of growth rates and contact radii. A space-filling computer
model for expanding spheres is described, and the program’s URL on the Internet is given. Several micrographs
and figures are analysed to show the relationship between grain-boundary shapes and growth kinetics. Previous
papers and computer models on this subject are revie@elR98 Elsevier Science Ltd. All rights reserved.
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INTRODUCTION boundaries) does not take place. Consequently the shapes
of spherulite boundaries observed in polymers are those that
formed as a result of random spatial distribution of nuclei,
crystal growth and eventual meeting of the spherical growth
surfaces on solidification. In that sense the shapes of grain

The morphology of grains and grain boundaries in
polycrystalline metals has been much researched and
described in published literature’. When referring to
crystalline polymers, it is usually tacitly assumed that the oundaries in polvmers are fundamentally  different
microstructures observed are analogous to those observed iﬁ poly y

metals on the basis that spherulites are equivalent toin?g:fatcr;glsteenggﬂdanlg dmﬁﬁfﬁ mlrﬁg Zreerrvv%dgllggor2¥e
grains. Superficially (neglecting the fine structure within : pap

the spherulites) this appears to be so; the grain boundaries’” this unique relationship between the curvature of

in polymers delineate shapes apparently similar to Interspherulitic boundaries and growth rates of the adjoining
those found in single-phase metals. Furthermore, Sp'rllﬁ:eu"t;aosc'ess of crystal aggregation into a spherulite is
metallographic techniques developed for quantitative P y ggreg P

stereological measurements are applicable equally tosensr[_lve to external_ influences with the result that the
both systenfs® spherical regularity is not always equally pronounced.

Following the work of Smith? it is now the generally Therefore it is necessary to assume that growth takes place

accepted view that grain boundaries in metals change shap h”{g%:gfgrg gflt?]sé Ofr(;[\(/avri];peéﬁiﬁreisaggle(ion;%ilct:lt(i)gﬁ CS)?
in the final stages of solidification (or during any subsequent the intrinsicp 0 erti%s ofg the ymoleculai/r or atomic
heat treatment), and depart from the original topology of prop

randomly distributed touching spheres. This grain regrowth constituents. Under —these ~conditions, spherulites, as
occurs (by diffusion) to satisfy the condition of minimum aggregates of single crystals radiating from the centre,

surface energy and to equilibrate surface tension at will always assume the shape of a sphere, since the radial

boundary edges and corners; the latter requirement beinggrOWth rate is the same in all directions. Adjacent

responsible for the curving of the boundaries. The rate of spherulites, which possess spherical symmetry, always

adjustment, which is proportional to curvature, is greatest at _have the same crystallographic relationship to each other

grain corners, where one boundary meets other boundarie§”de‘)endent of their relative posit.ions, and theref(_)re the
at nearly 120 As a result, the original shape of the grains >1ape of the common boundary will be space-invariant. In
and their boundaries changes with time. This effect is metals, under the same condmong, the shape of a boundary
illustrated inFigure 1 which shows four stages of grain- PEIWeen two growing metal grains should vary Z%d be
shape readjustment found in metals, reproduced from thed€Pendent on their relative crystallographic orientattion
original paper by Smith ' However, in nearly isometric and pure metals (fcc, bcc) this

The main point intended by this preamble is that the effect is not pronounced, and grains grow as spheres to a

shape of grain boundaries observed in metals is modified bygolg;jo;pﬁ:gxagg\}g ghe can infer that microstructures found
grain regrowth, and therefore the observed microstructure . . 2
does not represent the original random structure formed by'n crystalline polymers (formed on solidification under the

nucleation, growth and impingement. The hypothesis is put §pecific conditions of uniform temperature apd composi-
forward here that in crystalline polymers regrowth of tion) are governed by the growth and impingement of

. : perfectly spherical entities. It is convenient to describe the
spherulites (and the accompanying shape change c)fresulting shape of the spherulite boundaries by geometrical

considerations of two expanding spheres that touch and
*To whom correspondence should be addressed grow to form a common boundary.
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Figure 2 Geometry of the cross-section through two expanding spheres,
intersecting at a common boundary. Only small sections of the spheres are
shown. The spheres initially touched at poit At the first moment of
touch the radii werd\P = a, BP = b. PointM is at the edge of the common
boundary at a later time. The origin of the Cartesian axes @ at

times, and pointsO, P and Q coincide. The boundary
between the two spheres is always planar in the form of a
circle. The equations of the plane and of its diameter are:

x=0 (1)

Figure 1 Grain growth in metals. In A, the solid line shows the original 2 5

grains surrounded by five adjacent grains (not shown in full); the broken d= (Gat + a) —a

line shows the change of grain boundary shape driven by surface tension

and diffusion. In B, two further stages of grain growth are shown. Note the The intersection of the spheres and their boundary with any

significant morphological changes between the original and final structures. plane7r rand0m|y oriented in space will result in two cir-
At one stage four boundaries meet at one point—an energetically ’ !

unfavourable configuration (reproduced from Ref. 1) CU|a,r arc_hes (from the spheres), atta(_:hed to _a common
straight line (from the boundary). The intersection of the

GEOMETRICAL CONSIDERATIONS = plane with the intersphere boundary is always a straight
line.

Two points fixed in a Cartesian space are the centres of
expanding (growing) spheres denotednaand §; the radii Case 2 (Table )L
of the spheres are, andrg, respectively. At a timet, = 0,

the spheres just touch, and we denote the magnitudes of thqh
radii at that time as, = aandrg = b. Let G, andGg be the
corresponding radial growth rates of the spheres so that, for
times t > 0, the above quantities are simply related as
follows: r, =a+G,t andrg = b + Ggt.

In this case the spheres are always of different size, and
e boundary is a curved surface. Its shape is given by the
rotation of a hyperbola around a line joining the centres of
the two spheres. In referenceRaure 2, with the origin of

the x-axis at pointO, the equation of the surface is:

The spheres are not allowed to grow into each other, and (2%)2 V42
when (r,+rg) > (a+b) the spheres form a common 02~ b =1 2
boundary. In general this is a three-dimensional surface (@-b) a

possessing rotational symmetry around an axis formed by aThe surface is concave for the largessphere, and convex
line joining the centres of the spheres. C_on5|der a Cross-for the 8 sphere. The intersection of any random plane
section through the spheres as shownFigure 2 By with the boundary will always result in a hyperbola,
Pythagoras’ theoremAM? = AQ’ + MQ® and BM” =MQ providing the angle), between the normal to the plane
+BQ". Noting further that AM=r,, BM=ry, and the axis of rotation is greater than
AQ=(a+b)y2+x BQ=(a+b/2—x and MQ=y, a arctarj2,/ab/(a— b)]. For lesser angles the intersection
general analytical expression of the common boundary wi|| yield an oval, and finally a circle when the angle
surface can be derived in terms of the coordinatgsandz, X = 0 (herea andb are not the semi-axes of the hyperbola).
and timet. _ . . _ Note that the shape of the boundary is independent of the
Restricting considerations to linear growth only (i&, magnitude of the growth rates. In semi-parametric form the

and Gg = constant) we find that there are four distinct equation of the hyperboloid surface is as follows:
shapes of the boundary arising. The parameters describing

the four cases are summarised@ble 1 and are considered X = (a— b) G (a— b)t

— N 2a
in more detail below. a+b (22)

2
Case 1 (Table )L 22=y2=(b+Gat)2—(a+b_x>
In this case the growing spheres have the same radii at all 2
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Table 1 Four cases of boundary surfaces between growing spheres

Case Shape of boundary for> 0 Relationship between Relationship between Surface area of boundary
growth rates radii att =0 att — o

1 Flat plane GJ/Gs=1 a=>b Unlimited

2 Hyperboloid GJGs=1 a>b Unlimited

3 Sphere G, /Gs>1 a> b (GyG,)? Finite

4 Revolution of cardioid GG > 1 a< b (GyG,)? Finite

*These criteria are derived from the second term on the right-hand side of equation (3)

In the next two cases the sphere is growing faster than  x-axis direction will continue until a timé = (bG; — aG,)/
the 8 sphere. The one with the slower growth rate (G2 — Gf;), as can be derived by differentiation with respect
will always have a limited growth range because in due tot. The enclosure of thg@ will take place at time,, given
course, given sufficient time, it will be engulfed by the above for Case 3.

other sphere. However, the shape of the boundary surface

will vary, depending on the relative size of the spheres

when they touch, as expressed by the criteria in column 4, COMPUTER MODELLING

Table 1 We have developed a computer model to simulate the
growth of spheres in space. The program is available as
Case 3 (Table )L freeware on the Intern€t The processes of nucleation and

From the moment of touch, the slower growifigphere growth are independent of each other, and are generated by
can only expand in directions away from the faster growing appropriate algorithms. In this sense it is similar to models
o sphere until a closure timé,, when the larger sphere reported previously, which were developed to simulate
completely encloses the smaller one. From then onSthe single-crystal grain growth in metals and spherulitic growth
sphere cannot grow any more and remains enclosed. Then polymers?~'> However, there are several new features in
resulting common boundary is also a sphere. If the origin of our computer model which were not available previously.
the x-axis is taken as the point where the two spheres First, the topology obtained is the result of a space-filling
touched (pointP in Figure 1), then the equation of the process, and not the result of analytical solutions as given
boundary surface will be given by: above or in the previous computer models. The simulation is
carried out in a virtual space represented in the computer by
a lattice enclosed in a finite rectangular ‘container’. Initially,
all lattice points in the rectangular container are assigned as
‘liquid’ phase. Particles enlarge from the central nucleus in
proportion to the growth rate, which may vary in space.
Lattice points within each particle are identified as ‘solid’
phase, and lattice points separating the two phases are
assigned as ‘boundary’. When two particles meet, a
common boundary is also established by a simple algorithm
identifying the values of neighbouring lattice points. The
display of the microstructure is obtained by executing a
plane ‘cut’ through the container, and the visualisation is
achieved by assigning different values to (1) liquid pixels
) ) (white), (2) solid pixels (grey or colour) and (3) boundary

(X— rbound) +y +7= (rbound) (3a) pixels (black), which correspond to the appropriate lattice
points. By executing one-by-one plane cuts, a tomography
whereryong = rg(l + ¢), with { = G4/(G, — Gg). The of the microstructure can be obtained.
intersection of botha and 3 spheres with any plane, Second, the model has the ability to nucleate and grow
randomly oriented in space, will always result in two circles, two (or more) species independently. This is for the case of
one enclosed within the other. Notice that the diameter of nucleation from the liquid phase only, and it correspond to
the boundary is dependent on the growth rates through thethe solidification of a binary immiscible mixture. At this

1
~ 2(a+h)

(G2 —G§)t*+2(aG, —bGs)t]  (3)

Z=y*= (b+Ggt)’ — (b—x)°

If G, = G, and the origin is moved by the distanee{ b)/

2 from P to O, then equation (3) reduces to equation (2). In
addition, ifa = b, then equation (3) will reduce to equation
(1). After an interval of time, given by, = 2r4/(G, — Gg),

the form of equation (3) becomes closed and independent of
time, reducing to:

parameter. stage variations in liquid composition are not taken into
account.
Case 4 (Table )1 Third, the space-filing method allows for an easy

In this case thex sphere starts growing from a point on implementation of temperature, density and composition
the surface of an already existiggsphere, so that initially  gradients. Analytical solutions involving all three effects are
pointsA, O, P andQ coincide. At first thes sphere will grow difficult to implement; by contrast, this method lends itself
over the embryoniex sphere, confining the latter's growth  naturally to implementation of externally imposed fields
in the negativex-axis direction. However, the faster growing considered on a local scale of neighbouring cells at a time.
o sphere will in time grow larger than theé sphere and The model obeys the law of conservation of mass:
eventually engulf it and stop it from further growth. et X X =1 4

The development of this boundary surface is also sTAL+ A= )
described by equations (3) and (3) with the origin of the dX dX.
x-axis at pointP. The conditiona < b(G4/G,) ensures that =s_ _ L (5)
in equation (3) the second term fois negative, dominating dt dt
the expression for smatil The initial growth in the negative ~ whereXs, X, andX, are the mass fractions of the growing
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Figure 3 Spherulite microstructure corresponding to Case 2 (and figyre4 Microstructure of two types of spherulite, corresponding to Case
occassionally Case 1) obtained from the computer model described in the3 ~gpiained from the computer model described in the text. The small

text. The small crosses indicate projections of the spherulite centres onto osses indicate projections of the spherulite centres onto the plane of view.

the plane of view. Note: (1) two straight boundaries pointed out by down A houndaries between spherulites of the same type are hyperbolic, all
arrows on the left-hand side; (2) hyperbolic boundaries (some pointed to by ), ndaries between differing spherulites are circular. Note especially the
arrows); and (3) one near-circular feature formed by ‘grain capping’. Other ircijar boundary pointed to by the arrow

features are described in the text

spheres and liquid, and that of the boundary, respectively. nucleate at the same time. Hyperbolic boundaries occur
SinceX, < Xsor X, the error in equation (5) due to omis- between spherulites that were nucleated at different times.
sion of the boundary is small. Since we assume the densityFour boundaries meeting at one point also appear, as well as
of all the phases to be the same and equal to 1, the modela circular boundary wholly within another spherulite. These
therefore obeys the law of conservation of volume; i.e. features are indicated in the figure by the down-pointing
volume fractions and mass fractions are equivalent at all arrows.
times'®. Novel microstructures are generated when spheres of a
Figure 3shows the microstructure obtained from one of different type are allowed to grow within the volume of the
the simulations on a single species for thermally activated matrix. Figure 4 shows a two-phase microstructure
nucleation, and illustrates both Cases 1 and 2 describedgenerated by our computer model, consistingxofnd 3
above. The simulation was carried out in a container spheres treated as distinct phases with different nucleation
comprising 675x 675 X 90 lattice points. The depth of the and growth kinetics. Two features are noteworthy: (1)
container is chosen to be approximately twice the diameter spherical3 particles are formed within the faster growiag
of the largest spherulite that can be expected for the givenphase as predicted by Case 3 above; and (2) clusterifg of
species and temperature. The cross-section shown is atells which were not incorporated into thecells but grew
approximately 3/4 of the depth, chosen specifically to to form separate spherulites. Finallyigure 5 shows the
illustrate some of the salient features predicted by the modelcross-section of the cardioid-like shape generated in
and to be representative of the entire structure (not affectedaccordance with Case 4 above. In principle such shapes
by the presence of the walls of the container). Most grain could form during simulations similar to that shown in
boundaries are essentially a single pixel wide; these areFigure 4 but are unlikely to be found frequently owing to
making a large angle with the plane of the cross-section their low probability of occurrence.
(plane of the picture). Some boundaries are, however,
smeared (three examples are pointed to with slanting
arrows), which indicates a small, grazing angle between SPHERULITE MICROSTRUCTURES IN POLYMERS
the boundary surface and the cutting plane, and the Published literature contains numerous examples of micro-
fuzziness appears because of the fact that boundary pixelgraphs of spherulites in polymers, illustrating most of the
occupy finite volume as previously explained. geometrical shapes described above. The first classic
The small crosses indicate projections of the centres of example, shown irFigure 6, is that of spherulites grown
each spherulite onto the plane of the cross-section. In thein a thin film of isotactic polystyrene from the work of
encircled area the spherulite denoted as 1 contains threeKeith!’. The two selected spherulites, markednd g, are
crosses. The middle cross identifies the centre of this very closely of the same size and are assumed to have grown
spherulite, the one above and slightly to the right identifies at the same rate. The boundary between them is a straight
the centre of spherulite 2, and the third cross to the left and line as predicted by Case 1. Examples of such straight
slightly down identifies the centre of spherulite 3. boundaries are abundant in the published literature on
Straight boundaries appear between spherulites of whichpolymers.
the centres are equidistant from the boundary, i.e. that The next example, from an early work of Keft&ris that
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Figure 7 Two spherulites, growing at the same rate, but nucleating at
different times & > b), result in a hyperbolic boundary in accordance with
Case 2 for arx and sphere (micrograph reproduced from Ref. 18)

a b

Figure 5 The shape of interspherulite boundary corresponding to Case 4
in Table 1 (a) Thexzandyzcross-sections, obtained at different depths; (b)
thexy cross-sections, indicated in the top left picture by the three horizontal
lines. These diagrams prove the cardioid-like shape of the interspherulite
boundary

Figure 8 Hyperbolic boundaries between spherulites as viewed by
scanning electron microscopy (micrograph reproduced from Ref. 20)

by 2\/a)/(a— b). The construction lines and the hyperbola
were drawn onto the micrograph to show how good the
agreement is between the geometrical predictions and the
observed shape. To further illustrate the hyperbolic
curvature of interspherulite boundaries, we examine the
micrograph inFigure 8 showing a cross-section through
three spherulites. Although the conditions of growth are
unknown in this case, we may speculate that they
v . T approximated constant and uniform growth rate. The
Figure 6 Two spherulites, of the same radius and growing at the same Interpretation of the observed microstructure would be
rate, produce a straight-line common boundary in accordance with Case 1that the in-between spherulite has a smaller radius than the
for ana and sphere (micrograph reproduced from Ref. 17) two adjacent ones, and that (1) the centres of the spherulites
are coplanar or (2) its centre is below the plane of the centres
of the other spherulites. The cut through the grain
of banded spherulites grown in a thin film of poly(trimethy- boundaries forms a lens-like shape because it corresponds
lene glutarate), as shown Figure 7. The equally spaced to two images of Case 2.
rings, formed by twisting fibrils within the spherulite, One further example of the hyperboloid boundary
provide evidence that a constant growth rate prevailed for between spherulites is shown Higure 9 taken from
both thea and 8 spherulite$®. Note that, on touching, the Ref. 21. The interesting point to note is that these are
radius of thea spherulite was larger than the radius of the observed in a metallic system, and therefore provide
B8 spherulite (a>b). The spherulites grew to form a evidence for the assertion that the shape of interspherulitic
hyperbolic boundary as predicted by Case 2. The centresboundaries is governed by geometrical considerations and is
of the spherulites are in the plane of the micrograph, independent of the chemical nature of the substance.
therefore the radii of the spherulites can be measured off the For the next case we present the micrographigure 10
picture. From the properties of hyperbolae one finds that the from Ref. 22 of spherical particles appearing within larger
asymptotes are inclined to thxeaxis with a gradient given  spherulites in a binary immiscible mixture of polyethylene
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Figure 11 An unusual shape of spherulites within another crystalline
phase. This micrograph shows a stage during directional solidification of a
thin film of isotactic polypropylene. The crystalline phase, horizontally
oriented, can be considered as a large spherulite within which small
spherulites of a different phase nucleated and grew. This possibly illustrates
Case 3 but for the situation in which the ra@q/Gg is not constant during
growth (micrograph reproduced from Ref. 23)

30um

Figure 9 Hyperbolic boundaries between spherulites in a metallic alloy

(micrograph reproduced from Ref. 21) Finally we note another intriguing micrograph, repro-
duced here from a paper by Loving&rand shown in
Figure 11 This is another example of th&/3 growth of
spheres with unequal growth rates. The unidirectional
matrix, showing preferred orientation in the horizontal
direction, is the crystalline phase of polypropylene (Type IV
crystal structure). It can be considered as a segment of a
spherulite of infinitely large radius. Within the matrix
appear other spherulites with teardrop-like shape (Type |
crystal structure). Initially (before doing the mathematics)
we thought this shape to result from growth in accordance
with Case 3. However, according to the authors, this is due
to the conditions of growth departing from the quiescent
state, and experiencing a temperature gradient.

DISCUSSION

The specific Gibbs free energy of grain boundaries in metals
is substantially higher than its value within the body of the
grain. This provides the necessary driving force for the
e s e ooy ene e b aheeg MNMisation of grain-boundary strface area. In polymers,
a?a faster .rate than polyethylene, trﬁ)usygng%ﬁng an%l enclosing ¥he smaIIdue to th_e_ complex internal m'crOStmcwre o_f the SPheW“ter
polyethylene spherulites in accordance with Case 3 (micrograph the specific Gibbs free energy associated with the interior of
reproduced from Ref. 22) the spherulite is not less, and can be greater, than that
associated with the interspherulitic boundary. Therefore the
important observations can be made that: (1) there is no
and polypropylene, which purports to illustrate Case 3. Here driving force (or it is too small) to change the shape of
we find small, round crystalline polyethylene phase, interspherulite boundaries and, as a consequence, (2) there
enclosed within the large polypropylene spherulites. It is is a unique relationship between the curvature and shapes of
reasonable to assume that polypropylene crystallised at athe interspherulitic boundaries and the growth rates of
faster rate than polyethylene, engulfing it during growth. adjacent spherulites. In particular, this relationship holds
However, it is uncertain whether this microstructure formed information about the kinetics of crystallisation, and can be
necessarily by the mechanism identical with Case 3. It is used to advantage when other evidence is not available.
possible, for example, that molten polyethylene phase was For example, the hyperbolic grain boundary shape always
entrapped within the polypropylene spherulite, and that it implies Case 2 growth kinetics. In a paper on spherulitic
solidified at a later stage. No further direct examples of Case morphology of isotactic polypropylefig Norton and Keller
3, conforming strictly to the conditions of constant include a micrograph (Figure 1c) showing one spherulite
temperature growth, are known to the authors. with the so-called Type | crystal structure, surrounded by
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other spherulites of the Type IV crystal structure, grown continuing crystal growth is happening within the spher-
isothermally at 12%C. Those authors, referring to a previous ulites, whose boundaries are fully formed, and which do not
publicatiorf®, assert that the Type IV spherulites must have change shape as a result of this process. Another occurrence
grown at a higher rate than the Type | spherulite. However, of increasing degree of crystallinity with time is found in

it can be observed that the shape of the boundaries with thesome glassy polymers, such as poly(ethylene terephthalate),
adjacent spherulites is hyperbolic, which, by the observa- due to actual growth of the crystalline phase at a very low
tions above, implies unequivocally that both types of rate owing to high viscosity of the matrix. Therefore the
spherulite had exactly the same growth rate, contrary to shape of the boundaries and the resulting microstructure, as
the statements by the previous authors. a general rule, should not change on cooling or annealing.

If the nucleation of all spheres of one type is The separation and formation of phases in immiscible
instantaneous, the computer model generates constructionsnixtures occurs differently in metals and polymers. In
in accordance with Case 1 above, and simulates polymermetals, the microstructure is determined by the shape of
microstructures identical to those described by Madin  primary grains formed on solidification, and by the shape of
al.'? and Saetreet al** as site saturation, and by Galenski secondary grains (precipitates) formed during cooling from
and Piorkowsk& as athermal nucleation. The microstruc- high temperature or on subsequent annealing. In polymers,
tures generated show intercellular boundaries as straightsolid/solid transformations which lead to the formation of
lines. From the mathematical point of view this is equivalent new phases, such as precipitation from solid solutions, are
to Dirichlet partition of a plane in two dimensidftsand to not commonly observed. Therefore microstructures
Voronoi tessellation of space in three dimensf6ns observed in solid polymers are those formed during the

If the nucleation is sporadic (and all spheres of the same liquid-to-solid transformations mainly. Microstructures of
type), then the computer model generates growth in the type shown irFigure 4 are not seen in polymers, but
accordance with Case 2 above, and that described bythey appear frequently in low-molecular-weight substances.
Mahin et al.*? and Saetret al.** as Johnson—Mehl kinetics, In metals, as a consequence of grain regrowth after
and by Galenski and PiorkowsKaas thermal nucleation. In  solidification, the grain count will always underestimate the
two dimensions this results in hyperbolic boundaries—a number of nuclei. Furthermore, it was shown that
fact recognised by Mahiet al'? (see their Figure 3), and  continuous grain growth ia-brass not only leads to grain
also shown clearly in Figure 4 of Ref. 15. shape changes, but also results in significant texture

Circular or oval inclusions of one phase within another change®’. This means that corners formed by four adjacent
are predicted by both Case 2 and Cases 3 and 4. Thegrains (formed by chance during solidification) should be
appearance of particles relating to Case 3 is shown for a realobserved in real polymer microstructures, but should never
polymer in Figure 1Q and for computer simulation in  be seen in metal microstructures. An example in polymers
Figure 4, and has been explained as the result of the fasterof four boundaries meeting at one point is given in Ref. 24
growing phase enveloping another slower growing phase. (Figure 1a). Many other examples can be found in the
However, such ‘inclusions’ can also occur in single-phase literature. Our computer model also predicts this structure
crystallisation in accordance with Case 2 as already alluded(seeFigure 3).
to in preceding paragraphs. A plane of cross-section, In conclusion, it is emphasised that the ratiosGfGg
passing through the hyperboloid boundary inclined at an anda/b of two adjacent spherulites play paramount roles in
angle\ = 0, will result in a circular trace. This effect has the shape of the grain boundaries, and hence that of the final
been observed by Mahiat al*?, who referred to this as  microstructure.

‘grain capping’ (their Figure 4), also by Saete¢ al'*
in their Figure 1b, and in our computer-simulated micro- AckNOWLEDGEMENTS
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